skip to main content


Search for: All records

Creators/Authors contains: "Nyaanga, Joy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In Caenorhabditis elegans, many genes involved in the formation of the cuticle are also known to influence body size and shape. We assessed post-embryonic growth of both long and short C. elegans body size mutants from the L1 to L4 stage. We found similar developmental trajectories of N2 and lon-3 animals. By contrast, we observed overall decreases in body length and increases in body width of tested dpy mutants compared to N2, consistent with the Dpy phenotype. We further show that the dynamics of animal shape in the mutant strains are consistent with a previously proposed “Stretcher” growth model. 
    more » « less
  2. Growth rate and body size are complex traits that contribute to the fitness of organisms. The identification of loci that underlie differences in these traits provides insights into the genetic contributions to development. Leveraging Caenorhabditis elegans as a tractable metazoan model for quantitative genetics, we can identify genomic regions that underlie differences in growth. We measured post-embryonic growth of the laboratory-adapted wild-type strain (N2) and a wild strain from Hawaii (CB4856), and found differences in body size. Using linkage mapping, we identified three distinct quantitative trait loci (QTL) on chromosomes IV, V, and X that are associated with variation in body size. We further examined these size-associated QTL using chromosome substitution strains and near-isogenic lines, and validated the chromosome X QTL. Additionally, we generated a list of candidate genes for the chromosome X QTL. These genes could potentially contribute to differences in animal growth and should be evaluated in subsequent studies. Our work reveals the genetic architecture underlying animal growth variation and highlights the genetic complexity of body size in C. elegans natural populations. 
    more » « less